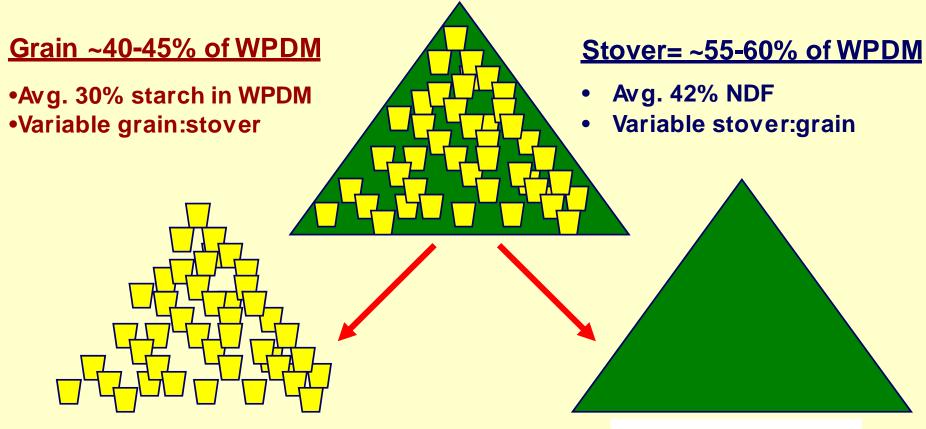

Results of UW Madison Corn Shredlage™ Feeding Trial


Luiz Ferraretto & Randy Shaver
Dairy Science Department, UW Madison

Whole-Plant Corn Silage

80 to 98% starch digestibility

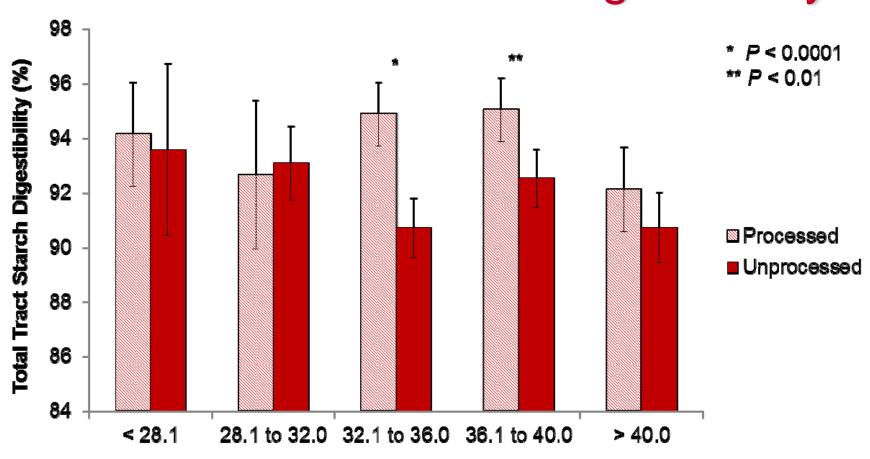
- Kernel particle size
- Duration of silage fermentation
- Kernel maturity
- Endosperm properties

40 to 70% IVNDFD

- •Lignin/NDF
- Hybrid
- Maturity

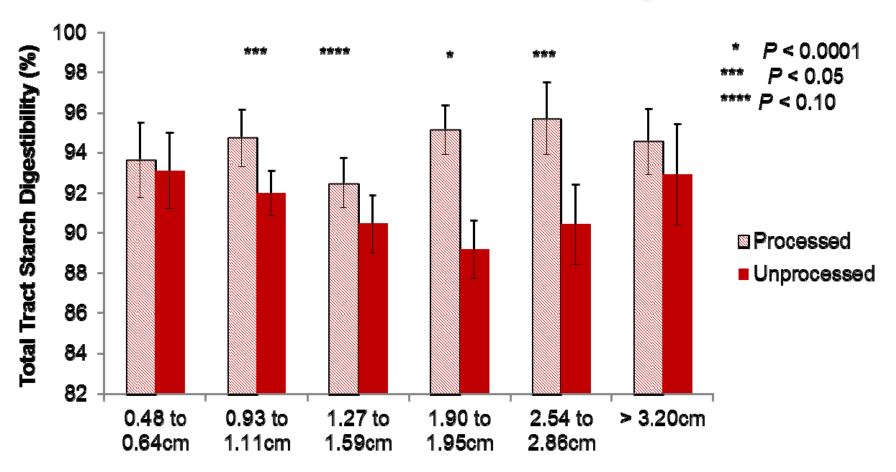
Variable peNDF as per chop length

Corn Silage Harvest Practices Meta Analysis


Ferraretto & Shaver, PAS 2012

- 106 treatment means 27 studies 24 articles
- January 2000 to July 2011 (AFST, JDS)
- Lactating dairy cows fed TMR, starch digestibility (in vivo)
- Proc Mixed (SAS, 2004)
- Fixed effects: treatment and covariance factors
- Random effect: study
- Weighted by cow (St-Pierre, 2001)

Kernel Processing*Maturity



Dry matter content of whole plant corn sliage

Kernel Processing*TLOC

Shredlage Corn

Shredlagem

KP

Shredlage

Corn production, harvest & storage

	Shredlage™	KP
Hybrid	DKC 57-79	DKC 57-79
Planting date	5/7/11	5/7/11
Location	UW - Arlington, WI	UW - Arlington, WI
Row spacing	30"	30"
Seeds per acre	34,000	34,000
Harvest date	9/8/11	9/9/11
Acres harvested	9.1	8.9
As-Fed tons harvested	221.4	214.6
Harvester	CLAAS Jaguar – Kutz Farms, Jefferson WI	JD 6910- UW ARS
Harvester Settings	30 mm TLOC; 2.5 mm Roll Gap	19 mm TLOC; 3 mm Roll Gap
Silo Bag	10' diameter	10' diameter
Inoculant	None	None

Penn State Separator Box (as-fed basis)

Samples obtained during feed-out from the silo bags

Screen, mm	Shredlage	KP
19	31.5%	5.6%
8	41.5%	75.6%
1.18	26.2%	18.4%
Pan	0.8%	0.4%

Kernel Processing Score

Samples obtained during feed-out from the silo bags

	Shredlage	KP
% Starch Passing 4.75 mm Sieve	75.0% ± 3.3	60.3% ± 3.9

WI Dairy Farm Survey Results

		Corn Silage								
		Fall			Spring					
	n	Avg	Std	Min	Max	n	Avg	Std	Min	Max
CSPS%	30	57.0	11.1	34.9	74.4	35	61.1	12.4	38.6	88.7

Huibregtse, Heuer et al., 2012, unpublished; RRL sample analyses

Nutrient composition of feed-out samples

	Shredlage	KP
DM, % as fed	33.9% ± 2.1	33.7% ± 3.2
CP, % DM	$7.3\% \pm 0.4$	$7.7\% \pm 0.3$
Starch, % DM	35.1% ± 2.2	35.6% ± 2.2
NDF, % DM	36.4% ± 2.4	36.3% ± 1.4

Fermentation profile of feed-out samples

	Shredlage	KP
pН	3.59 ± 0.05	3.61 ± 0.03
Ammonia, % of CP	4.7 ± 0.8	4.8 ± 0.8
Lactic Acid, % of DM	6.0 ± 0.9	5.1 ± 0.4
Acetic Acid, % of DM	1.0 ± 0.1	1.0 ± 0.1

Bag Packing Densities (lb DM/cu. Ft)

Volume = 3.14 × Radius² × Length

	L	Shredlage	KP
Entire Bags At Filling	158'	17.7	17.2
During Feed-out near back of bags	4'	17.5	17.2

Feeding Trial

- 10/20/11 12/28/11; UW Arlington Dairy
- 14, 8 cow pens; 112 mid lactation cows
- Cows stratified by breed, parity & DIM, assigned to pens, and pens randomly assigned to 1 of 2 treatments
 - Shredlage[™]
 - KP
- 2-week adjustment period with all pens fed
 50:50 mix of Shredlage & KP in TMR
- 8-week treatment period with all cows fed their assigned treatment TMR

Days in Milk & Body Weight at trial initiation

	DIM	BW, lb.
Shredlage	114 ± 35	1559 ± 47
KP	117 ± 36	1520 ± 33

Pens were comprised of 46% 1st lactation cows all of which were Holsteins, and of the 2nd or > lactation cows 80% were Holsteins

Experimental Diets (DM basis)

	Shredlage	KP
Shredlage	50%	
KP Silage		50%
Alfalfa Silage	10%	10%
Ground Dry Shelled Corn	10.3%	10.3%
Corn Gluten Feed	7.4%	7.4%
SBM 48%, solvent	6.9%	6.9%
SBM, expeller	9.3%	9.3%
Rumen-Inert Fat	1.9%	1.9%
Min/Vits	4.2%	4.2%

TMR Nutrient Composition (DM basis)

	Shredlage	KP
СР	17.2%	17.3%
Total NDF	28.1%	28.3%
NDF from Forage	22.3%	22.5%
Starch	25.4%	25.5%
Crude Fat	4.8%	4.5%

Penn State Separator Box (as-fed basis)

TMR Samples

Screen, mm	Shredlage	KP
19	15.6%	3.5%
8	38.2%	52.9%
1.18	38.9%	35.8%
Pan	7.3%	7.8%

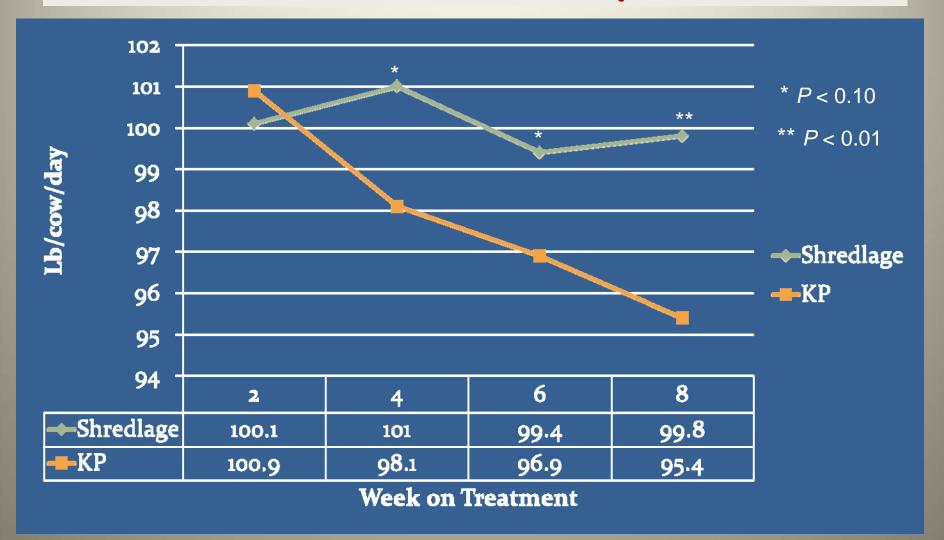
Feed Sorting – PSU Separator Box

% of Predicted Intake

Screen, mm	Shredlage	KP	P <
19	99.3	99.5	0.72
8	99.7	99.8	0.66
1.18	100.1	99.7	0.09
Pan	102.1	101.7	0.54

Dry matter intake & milk yield

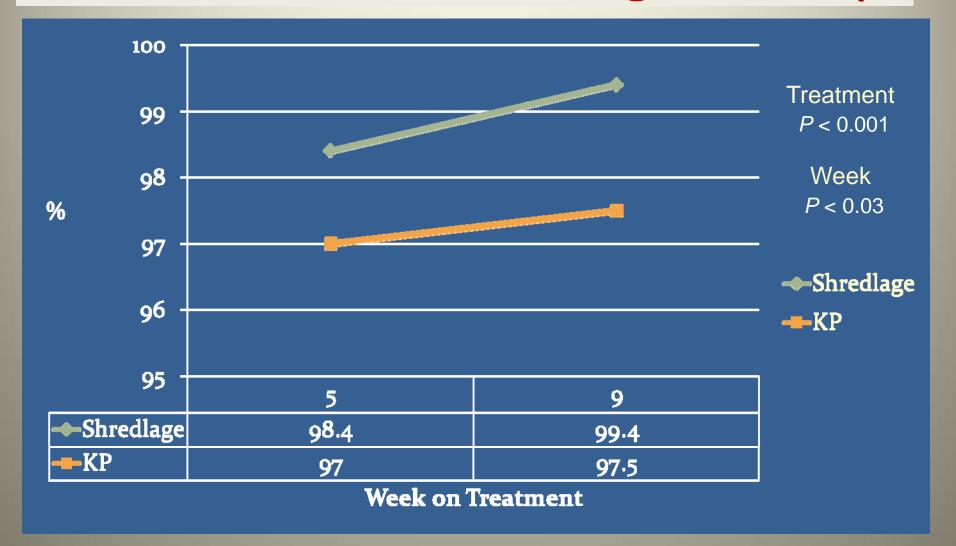
	Shredlage	KP	P <
DMI, lb/d	55.8	54.4	0.08
Milk, lb/d	96.0	94.2	0.14
Milk/DMI	1.72	1.73	0.74

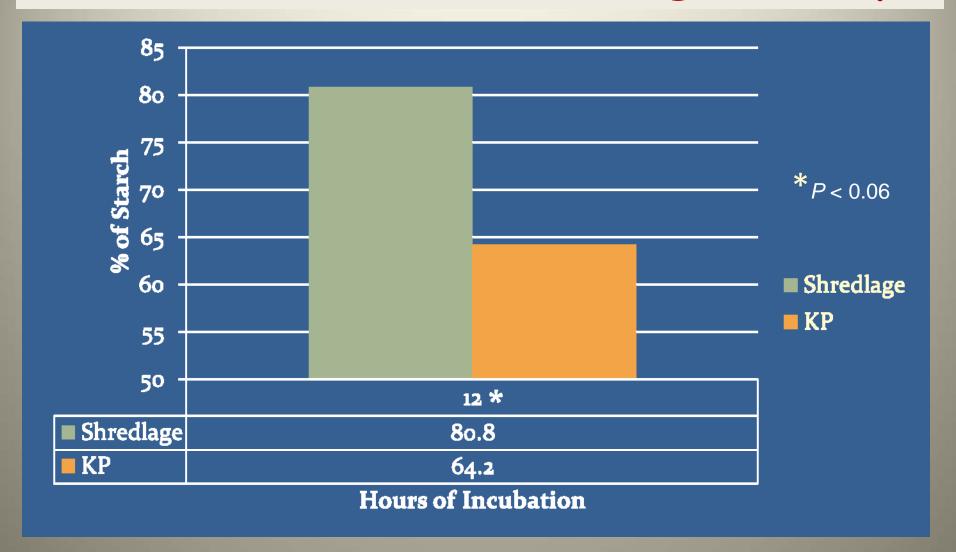

Milk composition

	Shredlage	KP	P <
Fat %	3.74%	3.70%	0.66
Protein %	3.18%	3.21%	0.29
MUN, mg/dL	13.9	13.6	0.48

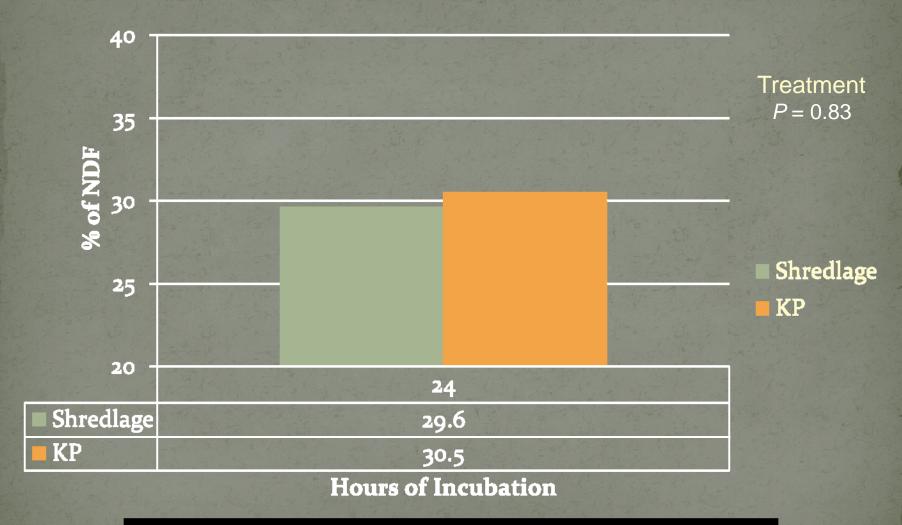
Component-corrected milk yields

	Shredlage	KP	<i>P</i> <
3.5% FCM, lb/d	100.1	97.8	0.07
FCM/DMI	1.77	1.79	0.65
ECM, lb/d	99.2	97.2	0.10
ECM/DMI	1.76	1.77	0.50


3.5% FCM Yield by Week


BW, BCS, BWC & Diet NE_L Results

	Shredlage	KP	P <
BW, lb	1568	1553	0.29
BCS	3.03	3.04	0.90
BWC, lb/d	0.62	0.68	0.84
Calc. Diet NE _L , Mcal/lb DMI	0.81	0.82	0.59


Total Tract Starch Digestibility

Ruminal In Situ Starch Digestibility

Ruminal In Situ NDF Digestibility

Ruminal incubations on undried, unground samples

Summary & Conclusions

- Under the conditions of this study
 - i.e.
 - TLOC & Roll Gap setting of the harvesters
 - Silage DM content, particle size and length of silo fermentation
 - Diet forage % and corn silage %
 - Level of production
 - Stage of lactation

Conclusions

- The proportion of material on the top (coarsest) screen of the PSU Separator was greater for Shredlage
 - This was also the case for the TMR which contained Shredlage
 - There was no sorting of the TMR for either treatment
- DMI tended to be greater for cows fed Shredlage
- FCM & ECM tended to be greater for cows fed Shredlage
 - The FCM response to Shredlage increased as the treatment period progressed
- Kernel processing score and ruminal & total tract starch digestibilities were greater for Shredlage

Acknowledgements

- Kutz Farms, Jefferson, WI
 - Shredlage harvest
- UW ARS Field Staff
 - Corn production, KP harvest, all bagging
- UW Blaine Dairy Staff
 - Herd care, milking, feeding, management
 - Feed & milk sampling
- Dairyland Labs, Arcadia, WI
 - Feed analysis
- Roger Olson, rolson@shredlage.com http://www.shredlage.com/
- Scherer Design Engineering, South Dakota

Visit UW Extension Dairy Cattle Nutrition Website

http://www.uwex.edu/ces/dairynutrition/

Cooperative Extension

Dairy Cattle Nutrition UW-Extension

Contact

Search

Presentations

Publications

Spreadsheets

Adobe Acrobat Reader to view

Welcome to Dairy Cattle Nutrition UW-Extension

The Dairy Cattle Nutrition UW-Extension site is designed to provide research-based information for the public seeking resources on applied aspects of the nutrition of dairy cattle.

Web Site Highlights

- Dairy Team News from the University of Wisconsin
- 2009 Four-State Dairy Nutrition & Management Conference Proceedings

UW Feed Grain Evaluation System

- 🛂 Technical note: A method to quantify prolamin proteins in corn that are negatively related to starch digestibility in ruminants (Josh Larson and Pat Hoffman - JDS paper)
- Corn Biochemistry: Factors related to starch digestibility in ruminants (Pat Hoffman and Randy Shaver
- A guide to understanding prolamins (Pat Hoffman and Randy Shaver)
- W Feed Grain Evaluation System (Pat Hoffman and Randy Shaver)
- Relative Grain Quality RGQ (Pat Hoffman and Randy Shaver)

Spreadsheets

MILK2006 Corn Silage: Calculates TDN-1x, NEL-3x, Milk per ton, and Milk per acre

Publications

- Benchmarking forage nutrient composition and digestibility
- Preeding Programs in High Producing Dairy Herds

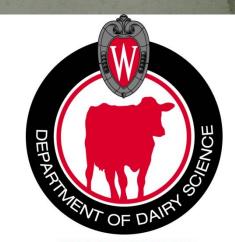
Presentations

- Benchmarking forage nutrient composition and digestibility
- Diets fed in selected WI high-producing dairy herds

Dr. Randy Shaver Professor - UW Madison & Extension Dairy Nutritionist 280 Animal Sciences Building 1675 Observatory Drive Madison, WI 53706-1284 Phone: (608) 263-3491

rdshaver@wisc.edu Biographical Information

Fax: (608) 263-9412



Professor - UW Extension Marshfield Ag Research Station 8396 Yellowstone Drive. Marshfield, WI 54449 Phone: (715) 387-2523 Fax: (715) 387-1723 pchoffma@wisc.edu

Biographical Information

EXCELLENCE IN EDUCATION AND DISCOVERY

UNIVERSITY OF WISCONSIN - MADISON

www.wisc.edu/dysci

© 2009 Board of Regents of the University of Wisconsin System, doing business as the Division of Cooperative Extension of the University of Wisconsin-Extension. If you have any questions regarding this site's contents, trouble accessing any